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COMMENT 

Exact pair-connectedness function of a one-dimensional 
hard rod fluid 

F Vericat, R D Gianotti and A E Rodriguez 
lnstituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB), UNLP. Calle 59 no 789, 
cc 565, 1900 La Plata, Argentina 

Received 16 June 1987 

Abstract. Assuming that two molecules of a fluid are connected (i.e. belong to the same 
cluster) when their centres are closer than a given distance d, we present, in explicit form, 
the exact pair-connectedness function for a one-dimensional fluid of hard rods of length 
D such that D <  d <2u and for densities which are compatible with the existence of a 
region of translational invariance in the system. 

In order to study the continuum percolation problem in interacting systems, DeSimone 
et a! (1986a, b)  have recently applied the Percus-Yevick integral equation for con- 
nectivity in liquids (Chiew and Glandt 1983, Chiew et a! 1985) to an extended hard 
sphere model. In the model the molecules of the fluid are hard spheres of diameter 
U. Two molecules of such fluid are considered directly connected if their centres are 
at a distance shorter than a certain pre-established value d. 

The percolation problem is to calculate the minimum particle density necessary to 
have a macroscopic physical cluster (Hill 1955). We must understand that two 
molecules of the fluid belong to the same cluster if they are either directly connected 
or indirectly connected through a path of directly connected intermediary molecules. 

At first sight, the same system seems to be much less interesting when it is considered 
in one dimension. In fact, in this case, the molecules become simple impenetrable 
hard rods (of length cr) moving on a line and the critical percolation density is, for 
cr < d < 2a, trivially equal to cr-’. 

However, even from the percolation point of view, the interesting aspect of the 
one-dimensional version of the hard sphere model is that, as we show in this comment, 
the pair-connectedness function admits an exact analytical expression. This way we 
have at our disposal an exact result for the pair connectedness that can be used as a 
‘laboratory’ in order to test several approximate theories which can eventually be 
applied to the more realistic case of hard spheres in three dimensions. 

For a system of N hard rods of length cr whose positions x, ( i  = 1,2 , .  . . , N )  are 
constrained to the segment [0, L], the ordinary pair distribution function p ( x l ,  x2), 
which is the probability of finding two particles in volume elements dx, and dx, around 
the positions x, and x2 respectively, is given in the canonical ensemble by 

N !  N 

P ( X , ,  x2) = - 5 . .  . 5 dx,. . . dxN n exp[-u(x,, x,)/k,T] 
( N - 2 ) !  Z(L, N )  ‘“I 

with Z (  L, N )  the configurational integral 
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In these equations kB is the Boltzmann constant, T the absolute temperature and 
u(x,, x,) the pair potential between particles i a n d j  at positions x, and x, respectively. 
For hard rods of diameter U, it is given by 

Following Hill ( 1 9 5 3 ,  the Boltzmann factors exp[-u(x,, x,)/kBT] can be separated 
into two parts 

exp[-u(xt, )/ k B  = exp[-u*(x,, )/kB T]+exp[-u+(x,, x,)/ kB TI (4) 

where the effective pair potentials between unbound (U*) and bound (U') particles 
are respectively given by 

and 

with d the connectivity distance. Therefore p(x,  , x,) can also be separated (Coniglio 
et a1 1977) 

(7)  

in such a way that p ' ( x , ,  x2), the pair-connectedness function, is the density probability 
that particles 1 and 2 are in the elements dx, and dx, around x, and x2 respectively, 
both particles belonging to the same cluster. Consequently, the remaining term, 
p * ( x , ,  x2), is the density probability that panicles 1 and 2 are in dx, and dx2 around 
x, and x2 but they do  not belong to the same cluster. 

In  order to proceed with the calculation of p + ( x I ,  x,), we note that, independently 
of the model and of the dimension, in general, we can obtain p'( 1 ,2 )  by first setting 
(4) into (1) (adapted to the corresponding dimensionality) and effecting the indicated 
products. We see that p (  1 , 2 )  is expanded as a sum of 2 N ' N - 1 ) ' 2  terms which are all 
the possible arrangements of the Boltzmann factors e* = exp( -U*/ k B T )  and e+ = 
exp(-u+/kBT) evaluated between the N (  N - 1) /2  possible pairs of particles. Accord- 
ing to its definition, p'( 1 , 2 )  is then built by selecting among all these summands those 
such that they have at least one 'physical' path of e* bonds between particles 1 and 
2. It is evident that, except for the one that contains only e+  bonds, all the other 
summands so chosen contain a mixture of e+ and e* factors and the evaluation of 
p + ( l ,  2)  by this route is, in general, a very difficult if not impossible task. 

However in our one-dimensional system of hard rods, things simplify remarkably 
if, in addition, we restrict ourselves to the consideration of the case in which u < d < 2u. 

In  this case, a simple analysis shows that particles 1 and 2, with x, < x,, belong to 
the same cluster if, independently of what happens in the external intervals [0, x,] and 
[x,, L], all the particles which are in the interval [x , ,  x,] form a chain of e'-bonded 
nearest neighbours. 

Let us assume with Leff and Coopersmith (1967) a partition such that there are 
NI particles in [O, x,], N2 particles in [ x , ,  x2] and N3 particles in [xz, L]. Since the 
factors e+ are zero for particle separations larger than d, we see that among the 

(with M2 = N ,  + 2)  possible diagrams in the interval [x , ,  x,], the only one * M21 M2 - 1 I/ 2 

P(XI, X.) = p*(x, 3 x2)+ P + ( X I ,  x2) 
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that persists is one in which the M 2 -  1 factors between nearest neighbours are e+ 
bonds, while the remaining M,( M 2  - 1) /2  - ( M 2  - 1) factors are e* bonds. These last 
factors are, according to ( 5 )  and (3), all equal to one because they link pairs of particles 
separated by distances larger than d. 

As a result, the problem of evaluating the contribution to p + ( x I ,  x 2 )  from the N2 
particles in the interval [ x ,  , xz] becomes equivalent to calculating the configurational 
partition function Z ~ ( x , - x , ,  N,) for a system of N 2  molecules in a volume x2-x l  
with two extra particles fixed at x, and x,, respectively, and such that the particles of 
this subsystem interact only to first neighbours through the effective bound-pair poten- 
tial U* given by (6). 

The complete pair connectedness function is then evaluated by considering that 
the contribution due to the N ,  particles of the interval [0, x , ]  (the N ,  particles of the 
interval [ x , ,  L]) agree with the configurational partition function Z , (x , ,  N, )  ( Z , ( L -  
x2,  N 3 ) )  for a system of NI (of N,) particles in a volume x ,  (a volume L - x , )  and an  
extra particle fixed at x I  (at x2) and such that the particles of this subsystem interact 
to first neighbours through the complete pair interaction U given by (3). We write 

where Z ( L ,  N )  is the configurational partition function for the whole system as given 
by ( 2 )  with ~ ( x , ,  x,) defined in (3). The primed summation denotes that N,  E {0, N }  
( i = 1 , 2 , 3 )  with the condition I:=, N , = N - 2 .  

The partition functions Z ( L ,  N I ,  Z , ( x , ,  N I ) ,  Z;(x2-xIr  N,) and Z l ( L - x 2 ,  N,) 
can be evaluated as shown in appendix B of the work of Leff and Coopersmith (1967). 
We obtain 

z( L, N )  = [ L - ( N - 1 )U] ' e [  L - ( N - 1 )U]  (9a)  

Z I ( x l ,  N , ) = [ X , - N ~ U ] ' ' I ~ [ X , - N ~ ~ ]  (96) 

z,( L - x,, NJ = [(  L - x?) - N ~ C ]  b [ ( L  - x,) - N , ~ I  (9c) 

and 

Z t ( X ,  - X I ,  N2) 

x e[(x, - x ,  ) - ( N,+ 1)d + r ( d  - a ) ]  (9d 1 
where 6' is the Heaviside step function. 

Equation (8),  with the Z given by (9),  is, as i t  stands, an exact expression for the 
pair connectedness function of a system with arbitrary L and N ,  and with U < d < 20. 
In particular we are interested in the thermodynamic limit ( L  + CO, N + m, N /  L = p = 
constant). Then, in a similar way to that by which Flicker (1968) obtains the ordinary 
correlation function p ( x l ,  x 2 )  for a hard rod fluid, we find, for number densities less 
than half the close packing fraction and after some manipulations, that (8) and (9) 
yield in the thermodynamic limit 
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with 

s = p a / ( l  - p a )  (11) 

a = d / a  (12) 

y = (X*-X1 - a)/a.  (13 )  

and 

The condition p < (2a)-' ensures the existence of a n  infinite region of translational 
invariance in the thermodynamic limit (Leff and Coopersmith 1967). Unfortunately, 
the particular character of the one-dimensional hard rod fluid causes, as we mentioned, 
that (10) is not useful in describing the region of main interest in percolation studies, 
namely the proximities of the critical percolation density. 

Actually, as we have mentioned above, the usefulness of (10) must be found from 
the point of view of the availability of an  exact result which can serve as an  experiment 
in order to test several approximate theories to be used in more realistic cases. Such 
a test can still give an idea about the goodness of the approximations involved in those 
theories, even if the system density is not near to the critical percolation density. 

Finally, we would like to point out that in order to calculate p+(xI,  x2) for 
connectivity distances which verify ( n  - 1)cr < d < nu with n = 3,4, . . . etc., it is 
necessary to replace Z:(x, - x1 , N 3 )  in (8) by the configurational partition function 
for a system of N2 particles in the volume x2-xI with two extra particles fixed at  x1 
and x2 and such that the particles of this subsystem interact, through the effective 
bound interaction U +  given by (3), to second, third, etc, neighbours respectively. 
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tina. FV and AER are members of CONICET and RDG is a fellow of the same 
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